NewsChannel1 - Строительный портал

Определение генофонд популяции. Что такое генофонд популяции

Основная цель популяционно-генетических исследований - изучение ведущих факторов микроэволюционного процесса, статики и динамики генетического состава популяций. В качестве единицы эволюции выступает популяция, представляющая минимальную по численности генетическую систему, в которой под действием отбора происходит взаимодействие генов и генных комплексов, обеспечивающее динамическое равновесие популяционной системы. В связи с этим Ф. Добжанский определил понятие микроэволюции как «изменение генотипического состава популяций» (Dobzhansky, 1951, с. 16).

Популяция является точкой приложения внешних факторов на биологические системы. В самом общем виде популяция, как структурная единица определенного уровня организации жизни, представляет собой самовоспроизводящуюся систему, обеспечивающую развитие и преемственность всего живого. С генетических позиций популяция - это «эколого-генетическая» общность, которая является естественноисторически сложившейся и естественно-исторически эволюционирующей системой (Глотов, 1983а, б, 1988). Эта системная организация делает популяцию, в отличие от особей, практически бессмертной за счет присущего ей системного, или популяционного, гомеостаза.

Популяция является не только единицей эволюции и биоценоза, но и объектом хозяйственной деятельности, использование природных ресурсов может быть эффективным только в случае соблюдения основных законов, определяющих жизнь популяционной системы. В условиях резких отклонений среды от нормы и при антропогенных воздействиях на популяций их генетическая структура подвергается изменениям, которые во многих случаях могут приводить к их разрушению. Изучение генетической структуры популяции и ее динамики должно иметь в связи с этим принципиальное значение для разработки биологически обоснованной системы охраны генофонда популяций рыб.

Понятие «генофонд популяции» органически связано с генетической сущностью понятия популяции. Формально представляя собой «совокупность генов всех особей в популяции» (Четвериков, 1926), генофонд при популяционных исследованиях воплощается в частоты генов, точнее – аллелей как формы существования генов. Однако определение частот аллелей является лишь способом изучения поведения генотипа особи как целостной интегрированной системы, только в некоторых случаях разложимой на отдельные гены (Яблоков, 1987). Такому мнению соответствует более позднее определение генофонда как «совокупности генотипов всех особей популяции» (Ayala, 1976). По существу, понятие генофонда популяции в большей степени связано с реализацией генетической информации в конкретной экологической и генотипической среде, чем с ее структурой, представленной последовательностью нуклеотидов в ДНК.

Каждая популяция обладает определенным запасом генетической изменчивости, который создается за счет возникновения мутаций и путем рекомбинаций. Впервые понятие генетической гетерогенности популяций было сформулировано С.С. Четвериковым (1926), который предсказал, что природные популяции любого вида генетически гетерогенны практически по любым признакам, т. е. в них по множеству локусов присутствуют два или более аллелей. С понятием генетической гетерогенности тесно связано понятие внутрипопуляционного генетического полиморфизма, определяемое как длительное сосуществование в популяции «двух или более хорошо обозначенных форм», причем наличие самой редкой из них не объясняется давлением мутационного процесса (Ford, 1940, с. 498). Н.В. Глотов (1983а, с. 3) рассматривает полиморфизм как «частный случай генетической гетерогенности, особый случай динамически устойчивой системы, контролируемой отдельными генами или блоками генов». Генетическая гетерогенность представляет собой «мобилизационный резерв» вида (Четвериков, 1926; Шмальгаузен, 1940; Гершензон, 1941; Майр, 1968), используя который популяции приспосабливаются к условиям существования при критических изменениях направления отбора. В последние годы появились факты, позволяющие считать, что чем разнообразнее состав популяций, тем полнее используется среда обитания и выше их численность, больше устойчивость к неблагоприятным воздействиям (Levins, 1968; Ayala, 1976; Valentine, 1976; Айала, 1981 и др.). 1981 и др.).

Отражая современные представления учения о популяции, эти определения соответствуют реальным методическим возможностям исследования генотипического состава популяций. Они имеют непосредственное отношение к выбору методологических подходов для эффективного изучения генофонда популяций различных животных, в том числе и рыб. Необходимость сохранять «все многообразие элементарных наследственНЫХ признаков», составляющих генофонд (Тимофеев-Ресовский и др., 1973), определяет и разнообразие генетических методов, используемых при изучении признаков разной природы - моногенных (качественных) и полигенных (количественных).

Генетически популяции характеризуются:

Ø Генофондом - совокупностью всех генов всех членов популяции

Ø Генетическим единством, обусловленным панмиксией.

Ø Наследственным разнообразием генофонда - генетической гетерогенностью генофонда, обусловленной мутационным процессом, потоком генов (миграцией), рекомбинацией.

Вначале генетики предполагали, что особи в популяции имеют гены в основном в гомозиготном состоянии. Позже, после широкого применения в исследованиях гель-электрофореза (метода, выявляющего отличия белков и ферментов по различию в подвижности в электрическом поле), было обнаружено, что гетерозиготность особей популяции - это обычное состояние генофонда у организмов с перекрестным оплодотворением. Генетическая изменчивость природных популяций, судя поданным, полученным с помощью электрофореза в геле, удивительно велика.

Так, беспозвоночные более изменчивы, чем позвоночные (13,4 % и 6,6 %), а растения изменчивы еще более (17 %). Степень гетерозиготности человека 6,7 %. Что это значит? Если допустить, что у человека в генотипе имеется 100 тыс. генных локусов, то каждый индивидуум будет гетерозиготен по 6700 локусам. Вот почему человеку свойственен высокий уровень наследственного разнообразия. Это проявляется в многообразии фенотипов: люди отличаются друг от друга цветом кожи, глаз, волос, формой губ, носа, ушной раковины, рисунком эпидермальных гребней на подушечках пальцев, голосом, отпечатком губ, запахом, группой крови и многими другими признаками.

Установлено, что чем шире диапазон генетической изменчивости популяции, тем быстрее она эволюирует.

Резерв наследственной изменчивости. Это "мобилизационный" резерв рецессивных мутаций, который формируется многими поколениями. С. С. Четвериков с сотрудниками в 1926 г. начал исследовать природные популяции дрозофилы. Инбридировалось потомство диких самок, пойманных в разных частях СССР. Обнаружилось, что многие гетерозиготные особи, будучи фенотипически нормальными, несли в скрытом виде рецессивные мутации.



Эти мутации оказались вне воздействия естественного отбора: они сохранялись и накапливались в гетерозиготах под покровом доминантных аллелей. Этот резерв, благодаря комбинативной изменчивости, используется для создания в каждом поколении новых комбинаций аллелей, а значит и новых вариантов признаков и фенотипов.

В популяции имеются большие запасы таких аллелей, которые не обладают максимальной приспособленностью в данном месте и в данное время. Они сохраняются в генофонде, встречаясь с низкой частотой в гетерозиготном состоянии до тех пор, пока вследствие изменения условий в экосистеме аллели не окажутся способствующими большей выживаемости и размножаемости тем особям, у которых эти аллели имеются. Отбор после этого быстро увеличивает их частоту. Селективная ценность аллеля - непостоянная величина, независимо от того, какой признак он контролирует. Среда изменяется во времени и в пространстве. Из-за этого одни условия в одном местообитании будут благоприятны для особей с данным вариантом гена, а другие - в другом местообитании - для другого варианта гена.

Большая популяция имеет больший генофонд и больший резерв наследственной изменчивости, поэтому она более защищена от изменений среды: при резком изменении среды большая популяция мобилизует генетические резервы и может пережить стрессовый период, а малая популяция имеет малый мобилизационный резерв и поэтому не сможет "дать ответ" экстремальным условиям в форме выживших и размножающихся особей. Один из механизмов сохранения гетерозигот- их превосходство (сверхдоминирование).

Генетический груз. В генофонде популяции имеются вредные мутации, которые при переходе в гомозиготное состояние снижают жизнеспособность особей или вызывают их гибель. Генетический груз - это совокупность летальных и полулетальных мутаций, мутаций стерильности и мутаций, понижающих жизнеспособность особей. Также и аллели, входящие в генетический груз, могут иметь селективную ценность. Так, рецессивный аллель, вызывающий в гомозиготном состоянии серповидную форму эритроцитов и гибель людей, в популяциях, страдающих от малярии, имеет частоту 30 %. Это связано с тем, что гетерозиготы лучше выживают в малярийных районах, чем гомозиготы по доминантному аллелю этого гена.

Биохимический полиморфизм. Этот термин вначале применялся в основном по отношению к морфологическим признакам. Биохимический полиморфизм - это белковый полиморфизм, результат множественного аллелизма: наличие в генофонде популяции нескольких вариантов генов ведет к полиморфизму одного и того же вещества. Гистонесовместимость вызывается именно полиморфизмом белков - у каждого человека свои варианты белков. Антитела также формируются определенными аллелями гена, и они у каждого человека "свои". Группа крови системы АВО - тоже пример полиморфизма белков. У человека обнаружено 14 различных систем групп крови, АВО - одна из них. У людей известно 130 структурных вариантов гемоглобина, 70 вариантов глюкозо-6-фос-фатдегидрогеназы, осуществляющей анаэробное расщепление глюкозы до лактата в эритроцитах, 20 вариантов трансферина - бетаглобулина, переносящего железо из кишечника в костный мозг, более десятка вариантов сывороточного альбумина, 5 разных изоферментов лактатдегидрогеназы. У крупного рогатого скота обнаружено 4 типа гемоглобина, 10 видов трансферинов, несколько типов казеина, несколько типов белков молока.

69. Популяция - элементарная единица микроэволюции. Генетические процессы в популяциях. Закон Харди-Вайнберга.
1)популяция - элементарная единица эволюции. Генетические процессы в популяциях. Закон Харди-Вайнберга

Как уже говорилось, наследуются не сами признаки, а код наследственной информации, определяющий комплекс возможностей развития - норму реакции генотипа, в пределах которой возможно не приводящее к гибели взаимодействие развивающейся особи со средой. При этом наследственная реализация каждого признака или свойства определяется не одним, а, как правило, очень многими генами (принцип полимерии в действии генов); с другой стороны, любой ген оказывает влияние не на один, а на многие признаки (принцип плейотропии в действии гена). Границы характерной для данного генотипа нормы реакции могут быть выражены, таким образом, лишь совокупностью фенотипов, развившихся из этого генотипа при всех возможных условиях среды.

Генетическая структура популяций Каждая популяция обладает собственной генетической структурой. Генетическая структура популяций определяется исходным соотношением аллелей, естественным отбором и элементарными эволюционными факторами (мутационный процесс и давление мутаций, изоляция, популяционные волны, генетико-автоматические процессы, эффект основателя, миграции и др.). Для описания генетической структуры популяций используются понятия «аллелофонд» и «генофонд». Аллелофонд популяции – это совокупность аллелей в популяции. Если рассматриваются два аллеля одного гена: А и А, то структура аллелофонда описывается уравнением: PA + Qa = 1. В этом уравнении символом PA обозначается Относительная частота аллеля А, символом Qa – Относительная частота аллеля А. Популяции, в которых структура аллелофонда остается относительно постоянной в течение длительного времени, называются Стационарными. Если рассматриваются три аллеля одного гена: А1, а2, а3, то структура аллелофонда описывается уравнением: P а1 + Q а2 + R а3 = 1. В этом уравнении символами P, Q, R обозначаются соответствующие частоты аллелей. Если рассматриваются несколько аллелей нескольких генов (A, B, C), то структура аллелофонда описывается системой уравнений:

P1 a1 + p2 a2 + p3 a3 + ... + pi ai = 1

Q1 b1 + q2 B2 + q3 b3 + ... + qi bi = 1

R1 c1 + r2 c2 + r3 c3 + ... + ri ci = 1

.......................................................

В этих уравнениях символами Pi, Qi, Ri обозначены относительные частоты аллелей разных генов. Генофонд. Генофондом называют Совокупность всех генотипов в популяции. При изучении природных популяций часто приходится сталкиваться с полным доминированием: фенотипы гомозигот АА и гетерозигот Аа неразличимы. Кроме того, в природе широко распространено полигенное определение признаков, причем типы взаимодействия неаллельных генов (комплементарность, эпистаз, полимерия) не всегда известны. Поэтому на практике часто изучают не генофонд, а Фенофонд популяций, то есть соотношение фенотипов.

Структура популяции по качественным признакам. Харди и Вайнберг показали, что генетические расщепления, которые происходят в каждом поколении у диплоидных организмов, сами по себе не изменяют общего состава генофонда. В идеальной популяции соблюдаются пять условий: 1) новые мутации в данной популяции не появляются; 2) популяция полностью изолирована, т. е. нет миграции особей - носителей генов в популяцию (иммиграция) и из популяции (эмиграция); 3) популяция бесконечно велика, к ней можно применять законы вероятности, т. е. когда в высшей степени маловероятно, что одно случайное событие может изменить частоты аллелей; 4) скрещивания случайны, т. е. происходит чисто случайное образование родительских пар - панмиксия; 5) все аллели равно влияют на жизнеспособность гамет. Харди и Вайнберг с помощью математического уравнения показали, что пропорции аллелей А и а в Такой идеальной популяции не изменяются от поколения к поколению. Остаются постоянными частоты трех возможных комбинаций этих аллелей - генотипы АА, Аа И Аа. Частоты генов находятся в состоянии равновесия по этим аллелям. Это равновесие выражается уравнением: Р2 + 2Pq + Q2 = 1, где Р - частота одного аллеля, Q - другого. Р + Q Всегда составляет единицу, Р2 И Q2 - частоты особей, гомозиготных по соответствующему аллелю, 2Pq - частота гетерозигот.

70. Способы видообразования.
Способы видообразования

Видообразование может быть рассмотрено в территориальном и филогенетическом аспектах. Новый вид может возникнуть из одной или группы смежных популяций, расположенных на периферии ареала исходного вида. Такое видообразование называется аллопатрическим (от греч. allos - иной и patris - родина). В других случаях новый вид может возникнуть внутри ареала исходного вида, как бы внутри вида; этот путь видообразования называется симпатрическим (от греч. syn - вместе и patris - родина). Новый вид может возникнуть посредством постепенного изменения одного и того же вида во времени, без какой-либо дивергенции исходных групп. Такое видообразование называется филетическим. Новый вид может возникнуть путем разделения единого предкового вида (дивергентное видообразование). Наконец, новый вид может возникнуть в результате гибридизации двух уже существующих видов - гибридогенное видообразование. Кратко опишем эти основные пути видообразования.

Аллопатрическое видообразование

Называемое иногда географическим) иллюстрируется приведенными выше примерами возникновения вида у больших чаек и в группе австралийских мухоловок. При аллопатрическом видообразовании новые виды могут возникнуть путем фрагментации, распадения ареала широко распространенного родительского вида. Примером такого процесса может быть возникновениевидов ландыша. Другой способ аллопатрического видообразования – видообразование при расселении исходного вида, в процессе которого все более удаленные от центра расселения периферийные популяции и их группы, интенсивно преобразуясь в новых условиях, становятся родоначальниками видов. Примеры, аналогичные видообразованию в группе больших чаек, известны и для других птиц, некоторых рептилий, амфибий, насекомых.

В основе аллопатрического видообразования лежат те или иные формы пространственной изоляции, и этот путь видообразования всегда сравнительно медленный, происходящий на протяжении сотен тысяч поколений. Именно за такие длительные промежутки времени в изолированных частях населения вида вырабатываются те биологические особенности, которые приводят к репродуктивной самостоятельности даже при нарушении первичной изолирующей преграды. Аллопатрическое видообразование всегда связано с историей формирования видового ареала.

Симпатрическое видообразование

При видообразовании симпатрическим путем новый вид возникает внутри ареала исходного вида.

Первый способ симпатрического видообразования - возникновение новых видов при быстром изменении кариотипа, например при автополиплоидии. Известны группы близких видов (обычно растений) с кратными числами хромосом. Так, например, в роде хризантем (Chrysanthemum) все формы имеют число хромосом, кратное 9, 18, 27, 36, 45..., 90. В родах табака (Ni-cotiana) и картофеля (Solanum) основное, исходное, число хромосом равно 12, но имеются формы с 24, 48, 72 хромосомами. В таких случаях можно предположить, что видообразование шло путем автополиплоидии - посредством удвоения, утроения, учетверения и т. д. основного набора хромосом предковых видов. Процессы полиплоидизации хорошо воспроизводятся в эксперименте посредством задержки расхождения хромосом в мейозе, в результате воздействия, например, колхицином. Известно, что полиплоиды могут возникать и в природных условиях. Возникшие полиплоидные особи могут давать жизнеспособное потомство лишь при скрещивании с особями, несущими то же число хромосом (или при самоопылении). В течение немногих поколений в том случае, если полиплоидные формы успешно проходят «контроль» естественного отбора и оказываются лучше исходной диплоидной, они могут распространиться и сосуществовать совместно с породившим их видом или, что бывает чаще, просто вытеснить его.

Полиплоидные формы, как правило, крупнее и способны существовать в более суровых физико-географических условиях. Именно поэтому в высокогорьях и в Арктике число полиплоидных видов растений резко увеличено. Среди животных полиплоидия при видообразовании играет несравненно меньшую роль, чем у растений, и во всех случаях связана с партеногенетическим способом размножения (например, у иглокожих, членистоногих, аннелид и других беспозвоночных).

Второй способ симпатрического видообразования - путем гибридизации с последующим удвоением числа хромосом - аллополиплоидия.

Наконец, последним, достаточно изученным способом симпатрического видообразования является возникновение новых форм в результате сезонной изоляции. Известно существование ярко выраженных сезонных рас у растений, например у погремка Alectorolophus major, раннецветущие и позднецветущие формы которого полностью репродуктивно изолированы друг от друга, и, если условие отбора сохраняется, лишь вопрос времени - когда эти формы приобретут ранг новых видов. Аналогично положение с яровыми и озимыми расами проходных рыб; возможно, что эти формы уже являются разными видами, очень схожими морфологически, но изолированными генетически (виды-двойники).

Особенность симпатрического пути видообразования - возникновение новых видов, морфофизиологически близких к исходному виду. Так, при полиплоидии увеличиваются размеры, но общий облик растений сохраняется, как правило, неизменным; при хромосомных перестройках наблюдается та же картина; при экологической (сезонной) изоляции возникающие формы также обычно оказываются морфологически слабо различимыми. Лишь в случае гибридогенного возникновения видов появляется новая видовая форма, отличная от каждого из родительских видов (но также имеющая признаки, характерные для двух исходных видов).

Гибридогенное видообразование

Этот тип видообразования обычен у растений: по некоторым подсчетам более 50 % видов растений представляют собой гибридогенные формы - аллополиплоиды. Укажем лишь на некоторые. Культурная слива (Prunus domestica) с 2n=48 возникла путем гибридизации терна (Р. spinosa, 2n=32) с алычой (Р. divaricata, 2n=16) с последующим удвоением числа хромосом. Некоторые виды пикульников, малины, Табаков, брюквы, полыни, ирисов и других растений - такие же аллополиплоиды гибридогенного происхождения.

Интересен случай возникновения нового симпатрического вида у Spartir townsendii (2n=120) на основе гибридизации с последующим удвоением числа хромосом местного английского вида S. stricta (2n=50) и завезенной в 70-х годахXIX в. из Северной Америки S. alternifolia (2n=70). Сейчас ареал этого вида интенсивно расширяется за счет сокращения ареала местного европейского вида. Другой пример гибридогенного вида, возникшего симпатрически, - рябинокизильник (Sorbocotaneaster), сочетающий признаки рябины и кизильника и распространенный в середине 50-х годов в лесах южной Якутии по берегам среднего течения р. Алдан. В результате гибридогенного видообразования особенно часто могут образовываться комплексы видов (или так называемых полувидов), связанных между собой гибридизацией - сингамеоны (В. Грант). В случае таких гибридных комплексов иногда бывает трудно обнаружить четкие границы между отдельными видами, хотя виды как устойчивые генетические системы выделяются вполне определенно.

Филетическое видообразование

При филетическом видообразовании вид, весь в целом изменяясь в чреде поколений, превращается в новый вид, который можно выделить, сопоставляя морфологические характеристики этих групп. Ясно, что в том случае возможно лишь сопоставление морфологических характеристик, так как изучать результаты филетической эволюции можно лишь с привлечением палеонтологического материала. При этом всегда остается возможность того, что на каком-то этапе эволюции от единого филетического ствола могли дивергировать другие группы. Поэтому в «чистом виде» филетическая эволюция, видимо, возможна лишь как идеализированное и упрощенное отражение эволюционного процесса на одномизотрезков жизни вида (фратрии). Заметим, что границы между отдельными видами в филетическом ряду форм провести невозможно - она всегда будет условной.

71. Популяционная структура человечества. Человек как объект действия эволюционных факторов.

ПОПУЛЯЦИОННАЯ СТРУКТУРА ВИДА

В природе практически не существует видов, которые были бы повсеместно распространены. Обычно каждый вид имеет свою область распространения - ареал, границы которого определяются границами пригодных для данного вида условий обитания. Космополитами - видами, обитающими повсеместно - являются прежде всего человек, сумевший освободиться из-под влияния окружающей среды, и (с определенной долей условности) некоторые обитающие совместно с ним животные, такие как серая крыса и рыжий таракан

Границы ареалов видов со временем изменяются. Как правило, это связано с изменением условий существования, а также с адаптацией видов к новой среде обитания. В настоящее время ареалы многих видов меняются под влиянием хозяйственной деятельности человека. При этом ареал может сокращаться, как у соболя, или расширяться, как у зайца-русака.

Условия среды определяют не только границы ареала, но и закономерности размещения особей в пределах этих границ. Как правило, внутри своего ареала животные, растения грибы или микроорганизмы распределены неравномерно: можно выделить отдельные «сгущения» - популяции.

Популяция - совокупность особей того или иного вида, в течение большого числа поколений населяющих определенное пространство, внутри которого особи могут относительно свободно скрещиваться друг с другом, в то время как обмен особями с соседними популяциями в значительной мере затруднен.

Популяционная структура видов зачастую бывает довольно сложной, и локальные поселения можно объединить в более крупные группировки. Популяции высокого ранга, объединяющие несколько более мелких единиц, стабильны во времени, и могут обладать собственной эволюционной судьбой.

В силу того, что разные популяции в большей или меньшей степени изолированы друг от друга, между ними накапливаются генетические и морфологические различия - формируется внутривидовая географическая изменчивость.

Популяция представляет собой совокупность живых представителей одного вида , находящихся в полной или частичной изоляции от своих собратьев. Данная статья поможет узнать вам о ней подробнее со всеми особенностями.

Генофонд, или как его еще называют генный пул , является одним из базовых понятий популяционной генетики.

Данный термин означает все множество форм генов определенной группы существ , находящихся в изоляции. Такое разнообразие обеспечивает лучшее приспособление живых существ к условиям окружающей среды.

Например, сегодня количество выживаемых коричневых воробьев больше, чем серых. Но если условия поменяются, то все может стать наоборот. Погибают лишь отдельные особи, но благодаря спасательному гену , целая популяция продолжает свое существование.

Понятие генофонда было сформулировано еще в 30-е годы 20 века . Его ввел советский генетик Серебровский А.С. Такое обозначение было выбрано для подчеркивания всего богатства генов. На западе термин ввел Ф.Г. Должанский.

Генофонд: его виды и особенности

Все популяции классифицируются на два типа:

  • Мономорфные – наличие только одной формы гена;
  • Полиморфные – противоположность первой.

У генов существует несколько различных вариаций. Например, большее общее число форм генов будет у того вида, который имеет больше одного набора хромосом .

В основном, представителей популяции в разы больше, чем существующих вариаций генов. При постоянном скрещивании особей, находящихся в близком родстве одной популяции, образуются мономорфные типы.

Популяция и эволюция

  • Пребывание в частичной изоляции . Это не дает возможности свободной передачи наследственной информации за пределы своего вида.
  • Благодаря свободному скрещиванию, особи создают особенный генофонд. Из-за регулярного обмена генами, выживают только те особи, которые прошли естественный отбор.
  • Проживание на одной территории в течение нескольких лет. За этот период происходит смена поколений, что приводит к эволюционным процессам.

Движущие силы эволюции в популяции

Рассмотрим главные процессы эволюции, оказывающие прямое и косвенное воздействие на генофонд.

Мутация. Данный процесс происходит не часто. Обычно возникает из-за влияния радиоактивных, химических и других факторов.

Мутация может быть вредна при одних условиях жизни, но станет подарком при других . Именно поэтому является важным явлением при популяции.

«Волны жизни» – это значительные изменения в численности популяции. Причины возникновения естественные, или вызванные природными катаклизмами. Популяционные волны также оказывают влияние на естественный отбор и его направление.

Дрейф генов – случайное изменение популяции частот форм генов. Это может послужить причиной истребления рецессивных генов, появление редких генов для вида.

Изоляция. Бывает двух вдов: географическая и биологическая. Изоляция, из-за отсутствия случайного скрещивания, способствует усугублению генетически различия между особями популяции.

Направленное действие имеет лишь естественный отбор, который способствует выживанию сильнейших особей и сохраняет их генотип. Отсюда вытекает две причины изменения генофонда – случайные и направленные. Разберем их детальнее.

Случайные причины

К таким причинам можно отнести следующее:

  • Частичная миграция в другое место обитания.
  • При разделении популяции барьером , как естественным, так и искусственным.
  • Природные катаклизмы (общий фонд образовываться из случайных генотипов выживших особей).
  • Неблагоприятные условия проживания, которые повлекли за собой массовую гибель существ.
  • Изменение численности популяции. Это можно наблюдать на примере насекомых, у которых популяция весной складывается из выживших зимой особей.

Исходя из этого, можно заметить отрицательное влияние случайных факторов на генофонд, которые только обедняют его. Но с другой стороны, это способствует возникновению жизнеспособных особей, которые имеют свой особый генофонд.

Направленная причина

Можно назвать лишь одну причину – естественный отбор . При помощи его увеличивается частота более полезных генов в одних условиях, и уменьшение вредных в других.

Естественный отбор называют, своего рода, «санитар» . Он способствует изменению фенотипа особей, их стиля поведения и образа жизни в целом. Цель данного процесса – максимальное приспособление к существующим условиям жизни.

Различие популяции: в чем причина?

Исходя из вышеизложенной информации, можно легко озвучить причины различия генофонда изолированных популяций определенного вида:

  • Ареал обитания и условия жизни . В зависимости от генотипа, особи по-разному приспосабливаются к одним условиям.
  • Направления мутагенеза. Мутация одного вида может случиться в одном месте, у другого совершенно в ином. Они будут либо доминантными, либо рецессивными.
  • Кроссинговер – явление, которое характеризуется обменом хромосом между участниками.

Одна из причин отличия генофонда – изолированность. Некоторые изменения накапливаются и наследуются годами, тем самым отдаляя популяции одной видовой категории в схожести.

Стабильность генофонда: возможно ли ее достичь?

С точки зрения теории, генофонд может быть стабильным и неподвижным. Это предположение утверждает закон Харди-Вайнберга : по истечению определенного периода частоты генов достигают равновесного состояния, а затем уже общий генофонд становится неизменным.

Но для появления стабильности, необходимо чтобы соблюдался ряд условий:

  • Особи с определённым генотипом не должны мигрировать.
  • Скрещивание должно быть только случайное.
  • Стабильные и постоянные условия проживания.

Но при сегодняшней жизни, соблюдение данных условий практически невозможно. Теоретическую стабильность можно воссоздать лишь искусственно .

ГЕНОФОНД ГЕНОФОНД

(от ген и франц. fond - основание), совокупность генов, к-рые имеются у особей данной популяции, группы популяций или вида. Термин «Г.» введён А. С. Серебровским в 1928. Основой генетич. целостности популяции является наличие полового процесса, обеспечивающего возможность постоянного обмена внутри её наследств, материалом. В результате формируется единый Г. популяции, куда в каждом поколении особями разного генотипа вносится больший или меньший вклад, в зависимости от их приспособит, ценности. Важнейшая особенность единого Г.- его глубокая дифференцированпость, неоднородность. Г. и относит, частоты генотипов в ряду поколений могли бы оставаться постоянными, если: величина популяции столь велика, что дрейф генов выражен слабо; нет избират. мутирования в к.-н. направлении; не происходило дифференцир. отбора генотипов; миграция отсутствует или мигранты гепотипически идентичны местным особям. Присутствие одного из этих факторов в природе изменяет частоты генов в Г. и в результате меняет равновесие частот генотипов. Разные виды обладают разл. Г., и естественно предположить, что факторы, изменяющие частоты тех или иных генов в популяции, можно считать осн. причинами образования видов. Предполагается, что образование более высоких, чем вид, таксономии, категорий (т. е. вся биол. эволюция) основывается, подобно видообразованию, на изменениях Г. Охрана Г. природных и искусств, популяций растений и животных - одна из центр, задач охраны живой природы.

.(Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. - 2-е изд., исправл. - М.: Сов. Энциклопедия, 1986.)

генофо́нд

Совокупность всех генов или генотипов в популяции или группе популяций какого-либо вида организмов. Генофонд достаточно большой популяции, в которой происходит свободное скрещивание организмов, обладает определённой целостностью и устойчивостью: частоты встречаемости тех или иных генов (аллелей ) и генотипов поддерживаются в популяции в относительном равновесии. Вместе с тем, если популяция подвергается действию т.н. элементарных факторов эволюции (мутаций, изоляции,естественного отбора и др.), происходит нарушение этого равновесия. Со временем устойчивое изменение частот генов (микроэволюция ) может дать толчок видообразованию .
Термин «генофонд» употребляют не только по отношению к природным популяциям. Напр., говорят о генофонде какой-либо породы домашних животных, сорта культурного растения или о генофонде всех пород и сортов. Необходимость сохранения генофонда всех живых существ Земли вытекает из признания генетической уникальности, неповторимости биологических видов, каждый из которых есть результат длительной эволюции.
Изучение генофонда человечества важно для решения многих проблем антропологии и медицины.

.(Источник: «Биология. Современная иллюстрированная энциклопедия.» Гл. ред. А. П. Горкин; М.: Росмэн, 2006.)


Синонимы :

Смотреть что такое "ГЕНОФОНД" в других словарях:

    Генофонд … Орфографический словарь-справочник

    - (от гены и франц. fond основание), совокупность всех генов данной популяции, группы популяций или вида в целом. Генофонд растительного и животного мира (за исключением генофонда опасных болезнетворных организмов) подлежит охране, которая должна… … Экологический словарь

    Современная энциклопедия

    Генофонд понятие из популяционной генетики, описывающее совокупность всех генных вариаций (аллелей) определённой популяции. Популяция располагает всеми своими аллелями для оптимального приспособления к окружающей среде. Можно также говорить … Википедия

    1) в генетике общий состав и число генов всех особей, составляющих популяцию, вид микроорганизмов или других живых существ; 2) в экологии вся совокупность видов живых существ либо в масштабах планеты, либо в ее отдельных регионах, экосистемах.… … Словарь микробиологии

    Генофонд - (от ген и французского fond основание), совокупность генов, которые имеются у особей, составляющих данную популяцию. Подчеркивая необходимость сохранения всех ныне живущих видов, говорят также о генофонде Земли (биосферы). Разрабатываются методы… … Иллюстрированный энциклопедический словарь

    - (от ген и франц. fond основание) совокупность генов, которые имеются у особей, составляющих данную популяцию. Подчеркивая необходимость сохранения всех ныне живущих видов, говорят также о генофонде Земли (биосферы). Разрабатываются методы… … Большой Энциклопедический словарь

    ГЕНОФОНД, все возможные гены и их различные АЛЛЕЛИ, которые существуют во всех представителях каждого конкретного вида в данный момент. Для видов, которые нужно сделать сильными и выживающими, генный фонд должен быть достаточно большим, чтобы… … Научно-технический энциклопедический словарь

    Сущ., кол во синонимов: 1 совокупность (29) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    Генофонд. См. генный пул. (Источник: «Англо русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд во ВНИРО, 1995 г.) … Молекулярная биология и генетика. Толковый словарь.

Книги

  • Генофонд и геногеография народонаселения. Том 1. Генофонд населения России и сопредельных стран , . Представлена исчерпывающая сводка имеющихся в литературе и новых данных по распространению частот генов и фенотипов по всем изученным в народонаселении России исопредельных стран генетическим…
  • Генофонд и геногеография народонаселения. Том 2. Геногеографический атлас населения России и сопредельных стран , . В подготовленном коллективом авторов втором томе многотомного издания "Генофонд и геногеография народонаселения" впервые представлен геногеографический атлас населения России и сопредельных…

Популяция (populus – от лат. народ. население) – одно из центральных понятий в биологии и обозначает совокупность особей одного вида, которая обладает общим генофондом и имеет общую территорию. Она является первой надорганизменной биологической системой. С экологических позиций четкого определения определение популяции еще не выработано. Наибольшее признание получила трактовка С.С. Шварца, популяция – группировка особей, которая является формой существования вида и способна самостоятельно развиваться неопределенно долгое время.

Основным свойством популяций, как и других биологических систем, является то, что они находятся в беспрерывном движении, постоянно изменяются. Это отражается на всех параметрах: продуктивности, устойчивости, структуре, распределении в пространстве. Популяциям присущи конкретные генетические и экологические признаки, отражающие способность систем поддерживать существование в постоянно меняющихся условиях: рост, развитие, устойчивость. Наука, объединяющая генетические, экологические и эволюционные подходы к изучению популяций, известна как популяционная биология.

Типы популяций . Популяции могут занимать разные по размеру площади и условия обитания в пределах местообитания одной популяции тоже могут быть не одинаковы. По этому признаку выделяют три типа популяций: элементарную, экологическую, географическую.

Элементарная (локальная) популяция – это совокупность особей одного вида, занимающих небольшой участок однородной площади. Между ними постоянно идет обмен генетической информацией.

Экологическая популяция – совокупность элементарных популяций, внутривидовые группировки, приуроченные к конкретным биоценозам. Растения одного вида в ценозе называются ценопопуляцией. Обмен генетической информацией между ними происходит достаточно часто.

Географическая популяция – совокупность экологических популяций, заселивших географически сходные районы. Географические популяции существуют автономно, ареалы их относительно изолированы, обмен генами происходит редко – у животных и птиц – во время миграций, у растений – при разносе пыльцы, семян и плодов. На этом уровне происходит формирование географических рас, разновидностей, выделяются подвиды.

Генофонд - понятие из популяционной генетики, описывающее совокупность всех генных вариаций (аллелей) определённой популяции. Популяция располагает всеми своими аллелями для оптимального приспособления к окружающей среде. Можно также говорить о едином генофонде вида, так как между разными популяциями вида происходит обмен генами.

Если во всей популяции существует лишь один аллель определённого гена, то популяция по отношению к вариантам этого гена называется мономорфной. При наличии нескольких разных вариантов гена в популяции она считается полиморфной.

Если у рассматриваемого вида имеется более чем один набор хромосом, то совокупное количество разных аллелей может превышать количество организмов. Однако в большинстве случаев количество аллелей всё же меньше. При сильном инбридинге часто возникают мономорфные популяции лишь с одним аллелем многих генов.

Одним из показателей объёма генофонда является эффективная величина популяции, сокращённо Ne. У популяции людей с диплоидным набором хромосом может иметься максимально в два раза больше аллелей одного гена, чем индивидов, то есть Ne <= 2 * N (величины популяции). Исключены при этом половые хромосомы. Аллели всей популяции в идеальном случае распределены по закону Харди-Вайнберга.

Более крупный генофонд с множеством разных вариантов отдельных генов ведёт к лучшему приспособлению потомства к меняющейся окружающей среде. Разнообразие аллелей позволяет приспособиться к изменениям значительно быстрее, если соответствующие аллели уже имеются в наличии, чем если они должны появиться вследствие мутации. Тем не менее, в неизменяющейся окружающей среде меньшее число аллелей может быть более выгодным, чтобы при половом размножении не возникало слишком много неблагоприятных комбинаций аллелей.

Термин «генофонд» употребляют не только по отношению к природным популяциям. Напр., говорят о генофонде какой-либо породы домашних животных, сорта культурного растения или о генофонде всех пород и сортов. Необходимость сохранения генофонда всех живых существ Земли вытекает из признания генетической уникальности, неповторимости биологических видов, каждый из которых есть результат длительной эволюции.

Изучение генофонда человечества важно для решения многих проблем антропологии и медицины.

Загрузка...